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Abstract—SiC photodiodes were fabricated using 6H single-
crystal wafers. These devices have excellent UV responsivity
characteristics and very low dark current even at elevated tem-
peratures. The reproducibility is excellent and the character-
istics agree with theoretical calculations for different device de-
signs. The advantages of these diodes is that they will operate
at high temperatures and are responsive between 200 and 400
am and not responsive to longer wavelengths because of the
wide 3-eV bandgap. The responsivity at 270 nm is between 150
and 175 mA/W with a quantum efficiencies of between 70%
and 85%. Dark-current levels have been measured as a func-
tion of temperature that are orders of magnitude below those
previously reported. Thus these diodes can be expected to have
excellent performance characteristics for detection of low light
level UV even at elevated temperatures.

I. INTRODUCTION

N ADVANTAGE of SiC photodiodes is that be-

cause of the wide bandgap of 6H SiC (3 eV) there is
no responsivity to IR radiation which is important for cer-
tain applications whenever it is desirable to detect UV in
an IR background. Another advantage is that SiC devices
could be utilized in a high-temperature environment be-
cause the wider bandgap should lead to a very low level
of diode dark current. This is especially important when
low-level photon fluxes need to be detected.

Previous efforts at making SiC photodiodes have uti-
lized N-ion implantation to form a very shallow n* junc-
tion in a p-type 6H SiC epitaxial layer and by Al diffusion
into 6H n-type crystals {1}, 121

The N-ion implantation method utilized a very low en-
ergy implantation to form a very shaltow (0.05-pm) junc-
tion in order to enhance the short-wavelength response.
However, contact sintering at high temperatures could in-
duce diffusion of the contact metal through crystalline de-
fects in this thin layer and thereby increase diode leakage.
The method of making the p*-n photodiodes using Al dif-
fusion required very high temperatures (2180°C) and long
times (20 h) [3].
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This paper describes results of photodiodes made using
n- and p-type epitaxial layers. This approach for making
SiC photodiodes avoids the difficulties of the two methods
previously utilized. Optical and electrical characteristics
are given as a function of temperature to 400°C. An op-
tical model is derived and compared with experimental
results. Optical responsivity data are compared with an-
alytical quantum efficiency calculations.

11. DeviCE FABRICATION

Single-crystal 6H SiC wafers, 1 inch in diameter, were
used as substrates. Devices were made using either n- or
p-type doped substrates. Al-doped p-type epitaxial layers
1to 5 pum thick were grown on these substrates. A heavily
N-doped n-type epitaxial layer of 0.2 or 0.3 pm thick was
utilized to form an n*-p junction. Wafers of this type are
available from Cree Research. The concentrations of im-
purities in each epitaxial layer is given in Table I. The
device mesa was patterned and etched using RIE and an
NF, /O, gas mixture. Different mesa dimerisions were
atilized these being 1 X 1 mm?, 2 X 2 mm?, 3 X 3 mm®.
For some devices, the n* area outside of the n* contact
region on the top of the mesa was thinned by RIE to thick-
nesses less than 0.1 um to increase the short-wavelength
response. This avoids yield losses caused by the contact
sintering step. The device cross section is shown in Fig.
1. Device passivation was accompanied by growing a thin
(0.05-pm) layer of SiO; and in some cases adding a chem-

-ical vapor deposited layer of SiO, using SiH, and O, over

the top of this thermally grown layer for a total thickness
of 0.6 pm (see Table D). When n-type substrates were
used, a top contact (Al) was made to a p* layer initially
grown on the n-type substrates before growing a more
lightly doped p layer. This was done to reduce the diode’s
series impedance. The contact t0 the top n* layer was Ni.
This contact comprising a simple cross in the middle of
the mesa covered less than 2% of the mesa’s area. Contact
sintering was done in Ar at temperatures between 900 and
1000°C.

1I1. DEVICE MEASUREMENT METHODS

Diode electrical characteristics were measured as a
function of temperature using Hewlett-Packard and
Keithly electrometers. Optical responsivity measurements
were made using the double monochrometer shown in Fig.
2. This system was optimized for measurements over the
200 to 450-nm wavelength region.

0018-9383/93503.00 © 1993 IEEE
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Fig. 1. Photodiode device structure.

TABLE 1
DEVICE STRUCTURES

Device Substrate  p-Layer Epi  n*-Layer Thickness SiO, Passivation

1,2 P Lump™, t ump 0.2 pm 0.05 pm
3,4 p tump* 1 pmp 0.3 um 0.05 um
5 n lump*, lump 0.075 um 0.6 um
6 P Sump 0.05 gm 0.055 um
"Dopant Layer Concentrations

p substrate Al 5t0 8 x 10" fem?
n substrate N 0.5t01 x 10'%/cm?
p* layer Al 2103 x 10'%/cm’®
p layer Al 1.2t03 x 10" fem®
n* layer N 51010 x 10'*/em®

A system employing a double monochromator for the
optical dispersing mechanism was considered essential in
order to minimize the effect of stray light. Outstanding

attributes of the monochromator are its fast optical speed -

(f/4), grating efficiencies at blaze wavelengths of greater
than 70%, and an extremely low scattered light level.
Gratings blazed at 250 nm were selected in order to op-
timize the monochromator performance over the 200-450-
nm wavelength region. Specifications for the double
monochromator are given below.

wavelength range 200 to 500 nm
(W /300-nm gratings)
dispersion 2 nm/mm
wavelength accuracy +0.2 nm
wavelength precision +0.1 nm
bandwidth 0.5,1,2.5, 5, and 10 nm
stray light less than 10~

A filter wheel controller was used to control the wave-
length and the second-order blocking filters. The light
source consisted of a 150-W quartz halogen lamp and a
50-W deuterium lamp. The sources can be imaged onto
the entrance slit of the double monochromator through the
use of a manual beam switching mirror. A quartz lens
collimator was attached to the exit port of the double
monochromator. This attachment uses a 7.6-cm focal
length fused silica lens to semi-collimate the monochro-
matic beam exiting the monochromator. A 6-mm-diame-

ter aperture was placed at the end of the collimating tube.
This provided a well-defined, uniform beam for irradiat-
ing both the standard detector and the SiC photodiode with
the same monochromatic flux. The detector used for cal-
ibration consisted of an enhanced silicon detector which
‘was attached directly to the end of the collimating tube.
An autoranging radiometer /photometer was used to mea-
sure the current generated by the detector. This instru-
ment has full scale ranges from 10™-107'° A and a res-
olution of 10™" A. Both wavelength and detector signals
were transmitted to 2 PC and enabled the PC to control
the entire measurement process and data reduction on a
real-time basis. The pertinent optical parameters for the
measurements were as follows:

wavelength range 200 to 450 nm
half bandwidth 5 nm

Calibration of the UV-enhanced silicon detector is based
on calibrations performed by the Far UV Physics Group
below 250 nm at NIST (National Institute of Standards
and Technology) [4]. The uncertainty in the reported
spectral response values is +5%. For the region above
250 nm, the calibration is based on the NIST Photodetec-
tor Spectral Response Calibration Transfer Package [5].
The reported uncertainty in the NIST scale over the wave-
length range of 250 to 450 nm varies from +6% to +4%.
The transfer uncertainty to the calibrated detector is esti-
mated at +1%. Accordingly, the uncertainty in the
monochromatic flux at the end of the quartz lens colli-
mator relative to the NIST scale is estimated to be less
than £2% over the 200- to 450-nm wavelength range.
The precision or ability to repeat measurements on the
SiC photodiodes was on the order of +5%. The final un-
certainty in the measurements is a combination of the un-
certainty in the monochromatic flux and repeatability un-
certainty.

The optical system was calibrated by scanning wave-
length and measuring the response of the calibrated Si ref-
erence diode. The SiC photodiode responsivity was then
determined by replacing the Si reference diode with a SiC
photodiode unit and repeating the wavelength scan. This
unit consisted of an Au plated kovar multiple pin package
header upon which a SiC photodiode chip or die had been
die- and wire-bonded. The short-circuit photocurrent was
measured to obtain the responsivity in milliamperes per
watt, and the quantum efficiency was determined from
these responsivity numbers using the simple formula

_ Tesponsivity (mA /W)
QE. = L1241 x =

0]

This is the so-called ‘‘external’’ quantum efficiency since
the responsivity of the device was measured without cor-
recting for reflection and therefore, represents the current
generated for a watt of photon flux incident on the device.
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Fig. 2. Optical schematic of the double monochrometer utilized to make photoresponsibility measurements.

IV. SiC Puotopiobe QUANTUM EFFICIENCY MODEL

In order to model the external quantum efficiency, the
transmission of light through the oxide passivation layer
and the generation and collection of carriers at the junc-
tion must be considered. Incident radiation traverses a
layer of SiO, before entering the shallow n* region. Var-
ious fractions of the transmitted radiation are absorbed
within this surface n* layer, then p epilayer, and the sub-
strate. We presume that each absorbed photon generates
one hole-electron pair within the silicon carbide. The
quantum efficiency, then, is the number of electrons de-
tected divided by the number of incident photons. The
model has three primary components: transmission of light
through any and all overlying films and into the silicon
carbide, absorption within the various regions of the sil-
icon carbide, and collection of the charge generated by
photon absorption at the n*-p junction. A previous mod-
eling study neglected the first component and simplified
the third component [2].

We compute transmission of light through an arbitrary
number of films by solving Maxwell’s equation for plane
waves at normal incidence [6]. This optical modeling ca-
pability is essential since films overlying the substrate can
alter the total quantum efficiency via interference phe-
nomena and absorption. Once radiation enters the silicon
carbide, one finds a simple exponential attenuation. Thus
absorption within the surface n* region, p epilayer, and
substrate are easily extracted. For these portions of the
model it is essential to include accurate wavelength-de-
pendent optical data. We utilized the results of Philipp
and Taft [7]; however, the tabulation of SiC optical data
published by Choyke and Palik could also have been used
[81.

Finally, we describe the charge collection portion of
the model. A previous study by Glasow er al. (1] empha-

sized the importance of both surface and bulk recombi-
nation. Thus we assign a surface recombination velocity
s to the SiC-SiO, interface at x = 0 as well as a bulk
diffusion length to each of the epitaxial layers. A hole
generated within the n* layer may recombine at the sur-
face, recombine within the bulk, or contribute to the de-
tected signal by diffusing to the n*-p junction. Similarly,
an electron generated within the p region may be lost to
the substrate and recombine within the bulk or add to the
detected signal by diffusing to the n*-p junction. Thus the
desired total quantum efficiency consists of a hole com-
ponent (for photons absorbed within the n* layer) and an
electron component (for photons absorbed within the
p region). This charge collection portion is essentially the

internal quantum efficiency or the efficiency after the pho-

ton has entered the silicon carbide and when coupled with
the light transmission calculation which includes the ox-
ide layer on the surface, the model gives the external
quantum efficiency or the efficiency of collected photo-
generated carriers for radiation incident on the structure.
The optical constants utilized for the SiO, passivation
layer were obtained from [9].
For the hole component, we write a steady-state, one-

dimensional diffusion equation with diffusion length L, as'

dp p

-5 — 1= —4® @

&L | (
where A (x) is proportional to the density of absorbed en-
ergy at depth x in the silicon carbide. The diffusion length
L, in (2) is defined as the square root of the product of

“The notation is regrettably prone t0 misinterpretation. The subscript p
in L, denotes its definition as a hole diffusion length. But the reader must
bear in mind that this hole diffusion length is a property of the n™ layer
only. Within the p layer, for example, we would write the electron diffu-
sion length as L,. -
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hole diffusivity and recombination lifetime. The Dirichlet
‘boundary condition p (X,) = O is appropriate for modeling
collection of holes at the n*-p junction while the condi-
tion D,p'(0) — sp(0) = O at the SiC-SiO, interface at x
= 0 specifies the recombination of carriers at the interface
‘with surface recombination velocity s. Noting that (2)
generation term —A (x) is proportional to the exponential
attenuation exp (—ox), we solve (2) and the associated
boundary conditions for p(x). We then compute the quan-
tum efficiency component 7, for photons absorbed within
the n* layer by deriving the current reaching the n*-p
junction. We find

L

P

oL,

layers is “‘large’’ (i.e., at least a factor of ten). The ana-
lytical quantum efficiency calculations varied the diffu-
sion length of holes in the n™ layer and electrons in the p
layer to fit the experimental data.

This model does not include the effect of a depletion
region at the n™-p junction. The extent of this region is
very small (~0.15 xm) because of the heavy dopant con-
centration in the p layer (10'7 /cm?) and is much smaller
than the p-layer thicknesses utilized in this study. There-
fore, inclusion of the depletion layer would not contribute
significantly to the quantum efficiency.

D X X
aD, +s — [—P sinh =% + s cosh —":I P
L, L,

T T o 1 D

L

For those samples that utilized a p* layer to reduce the
series resistance to the top contact to this layer, the com-
-ponent 7, for photons absorbed within the p/p* region is
treated similarly. Both boundary conditions (at x = X,
and x = X, + X,) are of the vanishing Dirichlet type. But
for devices with p and p* layers, we allow the diffusion
lengths to differ in the two layers. We-require the current
density to be continuous at this interface (which here im-
plies continuity of n'(x)) and we note that the electron
concentration will suffer a jump discontinuity due to the
built-in potential difference between the p and p* layers.
We therefore infer the appropriate jump condition from
the acceptor concentrations of the p and p* layers. Again
we solve the electron diffusion equation in light of the
boundary and interface conditions and compute the elec-
tron current at the n™-p junction to get the electron con-
tribution to the total quantum efficiency as

ol e~ X0  ole™%
=\l — —_ =
Mn a2L’2' -1 n — tanh L, . th
Cos z:
ale™*Xn+Xo)
+

X
(L2 - 1) cosh-—L£

¥

e+ 4 cosh ——
L
ol +
R, e
sinh —

L @

In equation (4), L, is the diffusion length of electrons in
the p region while L stands for the diffusion length of elec-

trons in the p™ layer. We have also simplified (4) because _

the difference in acceptor concentrations of the p and p*

icosh&+ssinh&
v L

— al,e™ . ?3)

L

‘D

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. Reverse Bias Leakage

The reverse bias leakage current at 10 V bias as a func-
tion of temperature is plotted in Fig. 3 and compared to
previously published results obtained from n*-p diodes
formed utilizing N-ion implantation on 6H SiC [1].

The leakage levels ot the epitaxial diodes are very low
being two to four orders of magnitude less than the leak-
age of the ion-implanted diodes. The epitaxial diode re-
verse bias leakage is also many orders of magnitude less
than typical silicon diodes whose dark current levels are
typically between 0.5 and 1 nA /cm? at 25°C but as high
as 10 mA /cm? at 300°C and 10 A /cm? at 500°C. In con-
trast, the diode leakage of 2 X 2 mm SiC photodiodes at
300°C is as low as about 10 nA /cm?. This is six orders
of magnitude less than a typical Si diode.

The low leakage level of the mesa-type epitaxial diodes
produces much larger photovoltages for low light level

. applications. This is because the open circuit photovol-

tage is determined by the diode’s forward characteristic
and the short circuit photocurrent which is dependent upon
the quantum efficiency or optical responsivity. Low dark
current levels also increase the dynamic range and reduce
shot noise. All these factors are important whenever it is
required to detect low level UV signals in a high-temper-
ature environment. ’

B. Optical Responsivity

The optical responsivity and quantum efficiency as de-
termined by measuring the short-circuit current were de-
termined for a number of devices made using different
epitaxial layer thicknesses. These variations are shown in
Table 1.

Fig. 4 plots the responsivity for devices 1, 2, 3, and 4.

Notice that the short-wavelength responsivity increases
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Fig. 3. Normalized (A/ cm?) reverse current leakage at 10 V versus
1000/T (K) of photodiodes that utilized N-ion implantation to form the
n*-p junction (1) given by the upper curve (square data points); all epitax-
ial layer diodes, high-voltage diode 4 = 3.7 X 103 ¢cm? (triangular points)
and photodiode, 4 = 4 X 10~2 cm? (circular points).
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Fig. 4. Spectral responsivity curves of diodes #1, 2 with 0.2-um n* epi

and diodes #3, 4 with 0.3-um n* epi. Notice a reduction of short-wave-
length response with thicker n* epi.

when the n* epitaxial layer thickness is decreased from
0.3 to 0.2 pm because the optical absorbance is very high
for short wavelengths and the surface recombination ve-

locity is also high. In fact, to model the experimental-

measurements, we found it necessary to make the surface
recombination velocity infinite. Because the surface re-
combination velocity is high, the implication is that the
surface of the SiC which has been passivated with a ther-
mally grown SiO, layer contains.large numbers of recom-
bination centers. For instance, it is likely that the surface
of the p-type SiC on the sidewalls of the mesa contains a
large number of SiO, /SiC fast interface states that act as
surface recombination centers. The long-wavelength re-
sponse, as shown, is unaffected by the upper layer thick-
ness because the optical absorbance is decreasing rapidly
with wavelength as the incident photon energy approaches
that of the bandgap.

In order to increase the longer wavelength photores-
ponse and to determine the diffusion length of electrons,
thicker 5-um epitaxial p layers were utilized (device 6).
In addition, in order to increase the short-wavelength re-

1507
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Fig. 5. Spectral responsivity curve of diode #5 with 0.075-pm n* epi to
enhance short-wavelength response. The curve jagged shape is caused by
thicker SiO, passivation (0.6 um).

sponse, devices 5 and 6 used thinner n" layers. The mea-
sured responsivity curves for devices 5 and 6 are shown
in Figs. 5 and 6. The data for devices 5 and 6 are replotted
as quantum efficiency and compared with analytical cal-

" culations in Figs. 7 and 8. The responsivity curve for de-

vice 5 shows the influence of optical interference effects
produced by the thicker SiO, passivation layer employed
(see Table I).

C. Photocurrent Produced by 257-nm Argon Laser
Light

Diode short-circuit output current was also measured at
257 nm as a function of optical input power using an ar-
gon ion laser and a frequency-doubling crystal (Fig. 9).
This diode with an area of 2 X 2 mm? was constructed
like samples 1 and 2 and the output current agrees well
with the responsivity measurements of Fig. 4.

D. Responsivity as a Function of Temperature

The responsivity of the photodiode at higher tempera-
tures will shift to longer wavelengths because of bandgap
narrowing; however, the UV responsivity should con-
tinue to be excellent to temperatures as high as 400°C as
shown by Glasow et al. [1]. Fig. 10 verifies this and shows
that the responsivity increases on the long-wavelength side
of the responsivity curve because the bandgap decreases
and hence absorption increases as the temperature in-
creases. However, one distinct difference is noticeable.
The peak response in Fig. 10 increases as the temperature
increases whereas in [1], the peak response decreased.

E. Electron Diﬁ'usion Length

Glasow et al. suggested that the diffusion length of
electrons must be greater than 1 pm [1]. Their argument
was based on a lifetime of 20 ns for electrons and holes
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Fig. 7.. Quantum eﬁiciéncy versus waveleagth for device #5 comparing
s experimental modeling results.

-and an electron mobility of 200 cm?/V - s which
diffusion length of 3 um for electrons.

For the quantum efficiency calculations for device 6
(Fig. 8) the diffusion length of electrons in the p layer was
varied and it was found that the sensitivity of the fit to the
electron diffusion length was quite high. The diffusion
length of 1.8 + 0.4 um is smaller than the estimate of 3
pm given in [1]. This diffusion length determination does
not depend on any assumptions about carrier lifetime and
mobility. Diffusion length is an important device param-
eter for bipolar transistor design for example. '

gives a
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Fig. 8. Quantum efficiency versus wavelength for device #6 comparing
experimental and modeling results.
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Fig. 9. Detector photoresponse curves at A = 257 nm for various resistor
loads using an argon-ion laser source and a frequency-doubling crystal.
Areais 2 X 2 mm’.
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VI. SUMMARY

SiC photodiodes made using 6H epitaxial layers on 6H
substrates were fabricated and tested. The electrical and
optical characteristics to temperatures as high as 350°C
were determined. Optical responsivity with a peak at about
270 nm of between 150 and 175 mA /W with a quantum
efficiency of about 70% to 85% was measured. Thinning
of the top n™ layer outside of the mesa contact proved to
be a good method of enhancing the short-wavelength re-
sponse and diodes made using very thin n* layers had
responsivities as high as about 50 mA /W at 200 nm. The
responsivities reported here are similar to these reported
in [1]. The reverse-bias diode leakage, however, was
shown to be much lower than that reported in [1].

The characteristics of these diodes were predictable
using an optical responsivity or quantum efficiency model
based on published 6H SiC optical absorbance data and
reasonable values of the electron and hole diffusion
lengths. The electron diffusion length in 6H SiC was de-
termined to be 1.8 + 0.4 um.
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Enhancement, heid at Rensselaer Polytechnic Institute, Troy, NY.
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granted 1| patents. He is the author of a book chapter n Laser Microfabri-
cation and Lithography published by Academic Press in 1989.
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B.S.. M.S.. and Ph.D. degrees in physics from
the Rensselaer Polytechnic Institute. in Troy, NY.
in 1980, 1981, and 1985, respectively- His doc-
toral research focused on the theoretical study of
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